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Introduction 

This report summarizes potential climate change effects on the availability of water, land use, 
transportation infrastructure, and key natural resources in central New Mexico (Figure 1). This work 
is being done as part of the Interagency Transportation, Land Use, and Climate Change Scenario 
Planning Project in Central New Mexico. 
 
Global and Regional Impacts of Rising GHG Concentrations 

In its fifth assessment report on global climate change (GCC) the Intergovernmental Panel on 
Climate Change (IPCC) finds greenhouse gas (GHG) concentrations at levels unsurpassed in the last 
800,000 years (IPCC 2013). The fifth assessment, like prior assessments, forecasts increasing 
surface and ocean temperatures, rising sea levels and states that “it is extremely likely that human 
influence has been the dominant cause of the observed warming since the mid-20th century” (IPCC 
2013). The IPCC’s temperature and sea level rise forecasts are based on a series of computer 
simulations using the CMIP5 climate prediction tool. The CMIP5 model was used to forecast a range 
of Representative Concentration Pathways (RCPs) corresponding to different levels of potential 
GHG mitigation efforts. The simulations show that while there is some uncertainty about how global 
temperatures will respond to changing levels of GHG emissions, even the scenario with the most 
aggressive GHG mitigation effort indicates an expected 0.3–1.7°C increase in global temperatures 
(Figure 2). The simulations also show that a failure to make significant reductions in GHG emissions 
is expected to cause a dramatic and potentially devastating rise in global temperatures by the end of 
the 21st Century.  
 
The fifth IPCC assessment report also finds that North America is experiencing an increasing 
number of warm days and nights when compared to cold days and nights (e.g. more than one 
standard deviation from daily means) annually and has linked GCC to earlier than normal spring 
snowmelts (Barnett et al. 2008), massive tree mortality events (Allen et al. 2010), extended heat 
waves (Peng et al 2011), greater frequency of large-scale forest fires (Flannigan et al. 2006), and 
declining water quality and availability (Milly et al. 2005). The projected warming is expected to 
increase drought severity and frequency in arid to semi-arid regions (Stott et al. 2010); increase the 
frequency of wildland fires (Allen et al. 2010); increase the variability and duration of precipitation 
events (Zhu et al. 2012); and affect the strength and frequency of the El Niño Southern Oscillation 
(ENSO) and Pacific Decadal Oscillation (PDO) which is expected to push the North American 
Monsoon later into the summer (Garfin 2013). The combined impacts of earlier spring snowmelt and 
later arriving summer monsoons will increase stress on the natural and human systems that depend 
on streamflow and soil moisture during summer low flows.  
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Figure 1. Central New Mexico Study Area. 
 



Climate Change Effects on Central New Mexico’s Land Use, Transportation Infrastructure, and Key Natural Resources  EMI 

 

3 
 

 
Figure 2. Global warming trends from IPCC 2013 model predictions (modified from IPCC 
2013). The two pathways represent the most aggressive (RPC 2.6) and least aggressive (RCP 
8.5) GHG mitigation scenarios. The solid lines represent ensemble averages amongst the 
climate models and the shaded regions represent the full range of model results. 

 
Southwest Regional GCC Implications 
The climate of the study area, central New Mexico, is highly variable as it located on the boundary 
between the temperature mid-latitude zone and the subtropical dry zone and elevation ranges from 
approximately 5,000 feet to 10,600 feet. Climate change is projected to affect the atmospheric and 
oceanic processes that influence the location of the climate zone boundary and ocean-driven climate 
anomalies such as El Nino, La Nina, and the North American Monsoon (Llwellyn and Vaddey 
2013). 
 
The Bureau of Reclamation, Sandia National Laboratories, and the U.S. Army Corps of Engineers 
prepared the West-Side Climate Risk Assessment: Upper Rio Grande Impact Assessment report 
(Reclamation) which discusses future climate change (Llwellyn and Vaddey 2013). The projections 
of future change in temperature and precipitation were based on the National Oceanic and 
Atmospheric Administration using the Intercomparison Project 3 (CMIP3) models and the North 
American Regional Climate Change Assessment Program models (Llwellyn and Vaddey 2013). The 
Upper Rio Grande basin-average mean-annual temperature is projected to increase by approximately 
5° to 6° Fahrenheit (F) (during the 21st century (Llewellyn and Vaddey 2013). The Climate 
Assessment of the Southwest (CLIMAS) projects temperature to rise 1.3° F to 3.8°F during the 2021–
2050 time period (Weiss 2013). The simulated annual climate averaged over the Rio Grande sub-basins is 
shown in Figure 3. 
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Figure 3. Simulated Annual Climate Averaged over Rio Grande Sub-Basins.  

 
Both the Reclamation and CLIMAS reports state there is high confidence that the average 
temperatures will increase over the 21st century in the Southwest. Summer and fall temperatures will 
rise more than spring and winter temperatures. The number of heating degree-days and the number 
of consecutive hot days will increase.  
 
The Reclamation report cites model simulations for the Southwestern U.S. used in the most recent 
National Climate Assessment which projects changes in precipitation that range from -13% to +10%. 
The CLIMAS report concludes that annual precipitation in the Southwestern U.S. could change by -
10% to +7% during the 2021-2050 time period. 
 
Both the Reclamation and CLIMAS reports conclude that that the predictions of precipitation levels 
have much greater certainty than for temperature. Precipitation will become more concentrated in a 
small number of more intense storms. More precipitation is projected to fall as rain and less will fall 
as snow. The slight falls in fall and winter precipitation could be offset by larger losses in summer 
precipitation. 
 
Increased drought is likely in the Southwestern U.S due to increased evaporation from higher 
temperatures according to both the Reclamation and CLIMAS reports. Both reports identify three 
types of drought. Meteorological drought is a period with below normal precipitation. Agricultural 
drought is a period of dry soils, which could be caused by high temperatures due to evaporation, 
changes in land use, vegetative cover, or watershed hydrology. Hydrological drought is declines in 
water storage and stream flow due to trends in precipitation, temperature, vegetation or land use. A 
review of 24 Intergovernmental Climate Change Panel (IPCC) models suggests that temperature 
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increases will be the predominant factor in increasing the likelihood of drought in the Southwestern 
U.S. even for those for those models that project precipitation increases in the winter. In a review of 
19 models used by the IPCC in its most recent assessment report, it was found that under the A1B 
(moderate emissions) scenario, models project a sustained transition to drier climate beginning in the 
1990s or early in the 21st century (Seager et al. 2007). This change is driven by declines in 
precipitation and increases in evaporation. Most of the projected drying occurs in winter. The 
average climate of the Southwest by mid-21st century will resemble that of climate during a multi-
year drought today. “The most severe future droughts will still occur during persistent La Niña 
events, but they will be worse than any since the Medieval period, because the La Niña conditions 
will be perturbing a base state that is drier than any state experienced recently” (Seager et al. 2007).  
 

 
 
Figure 4. Global warming trends from IPCC 2013 model predictions (modified from IPCC 
2013). The two pathways represent the most aggressive (RPC 2.6) and least aggressive 
(RCP 8.5) GHG mitigation scenarios. The solid lines represent ensemble averages amongst 
the climate models and the shaded regions represent the full range of model results. 
 
Global Climate Change Implications for the Central New Mexico Region 
Global climate change is expected to have a severe impact on the southwestern United States 
including the Central New Mexico region. This region already faces limited water availability and 
frequent, widespread drought conditions. The southwestern United States is especially sensitive to 
these expected changes due to the region’s topography and the influence of weather forcing effects, 
such as the ENSO and the PDO that amplify the highly variable nature of rainfall patterns over the 
region. It is very likely that the region will experience a decrease in water availability under future 
climates.  
 
New Mexico depends on precipitation falling within its borders and water conveyed through the Rio 
Grande from Colorado and across the continental divide by the San Juan Chama Diversion Project 
(SJCDP) for its water security (New Mexico First 2014). The Rio Grande watershed is the fifth 
largest in the United States and covers an area of approximately 355,000 mi2. There are three 
counties within New Mexico that comprise the Middle Rio Grande Basin (MRGB; Figure 5): 
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Valencia, Bernalillo and Sandoval counties. The MRGB, while only encompassing 3 of the 33 
counties in New Mexico, as of 2010 held just over 42% of the state’s population of 2,059,179 
citizens (U.S. Census Bureau). The basin also encompasses two endangered species habitats––the 
Rio Grande Silvery Minnow (Hybognathus amarus) and Southwestern Willow Flycatcher 
(Empidonax traillii extimus). Both of these species rely on the presence of natural flow regimes that 
episodically inundate the riparian floodplains along the Rio Grande. Climate change is predicted to 
impact every water district within New Mexico. The MRGB is expected to experience increased 
temperatures, altered flows, drought, risk of catastrophic fire events, and overall reduction in annual 
precipitation amounts (Llewellyn and Vaddey 2013).  
 

 
Figure 5. New Mexico Water Planning Regions. Bernalillo, Sandoval and Valencia counties 
lie in Region #12 (NMF 2014). 

 
The Rio Grande is fed primarily by snowpack runoff, receiving upwards of 50% of its annual 
precipitation as snowfall in the winter months (Llewellyn and Vaddey 2013, U.S. Environmental 
Protection Agency 2013). Baseflow within the river system in early April to June, along with an 
additional input of 96,200 acre-feet from the SJCDP, serves to replenish reservoir storage throughout 
the upper watershed and provides water resources to irrigators and municipalities throughout the 
drier summer and fall months which are accompanied by depleted streamflows (Llewellyn and 
Vaddey 2013, U.S. Environmental Protection Agency 2013). Figure 6 summarizes variations in 
streamflow for the upper Rio Grande, Rio Chama, and Rio Puerco over the course of the year 
(annual hydrographs). The solid black lines represent the mean value on each day of the year. The 



Climate Change Effects on Central New Mexico’s Land Use, Transportation Infrastructure, and Key Natural Resources  EMI 

 

7 
 

gray region represents the 25% and 75% quantiles for each day and the dashed blue line indicates the 
mean annual streamflow. Several important characteristics are evident. First, the upper Rio Grande 
and Rio Chama are snowmelt-dominated systems with high spring flows and lower summer, fall, 
and winter baseline flows. The Rio Puerco, on the other hand, is a summer monsoon dominated 
river. Second, the variability of the data on any given day is exceptionally high. For example, on Day 
152 (June 1) the 25% and 75% quantile values are 1,360 cubic feet per second (cfs) and 5,960 cfs, 
respectively. In other words, the flow has been at or below 1,360 cfs on June 1 for 25% of the years 
on record and it is been at or above 5,960 cfs for 25% of the years. Managing water resources in a 
system with this degree of variability is remarkably difficult and climate change is expected to 
increase this variability while decreasing the overall water availability (Hurd and Coonrod 2012).  
 
Surface waters within the Rio Grande watershed are allocated to water users within New Mexico or 
are obligated to be delivered to Texas under the terms of the Rio Grande Compact. The major water 
users include the Albuquerque Bernalillo County Water Utility Authority (ABCWUA), the Middle 
Rio Grande Conservation District (MRGCD), the City of Santa Fe, and several other smaller 
municipalities.  
 
The surface water supply can be segregated into native flows (those that originate in the Rio Grande 
watershed) and the SJCDP supply. Native flows are subject to compliance under the Rio Grande 
Compact. Under the terms of the contract, New Mexico must deliver 57% of the flow recorded at the 
Otowi gage to below the Elephant Butte Dam for delivery to Texas and can consume the remaining 
43% of flow. Under high-flow conditions, New Mexico can consume only 13% of the Otowi flows 
and must release 87% of the flows below Elephant Butte Dam (Gaume 1999). 
 
SJCDP flows are delivered to the Rio Grande Watershed under the terms of the Upper Colorado 
Compact and thus are not subject to the Rio Grande Compact. The largest water contractor to the 
SJCDP is the ABCWUA, which holds rights to 48,200 acre-feet of water each year. The MRGCD 
holds rights to 20,900 acre-feet of SJCDP water. The City of Santa Fe, other smaller municipalities 
and tribes have rights to the remainder of the approximately 96,000 acre-feet of average annual 
supply. 
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Figure 6. Annual hydrographs (streamflow vs time) for three major stream gages indicating 
water availability for the Central New Mexico Region. Solid black lines represent the daily 
means and the gray areas represent the streamflow between the 25% and 75% quantile. The 
blue dashed lines indicate the mean annual streamflow for each gaging station. 
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Effects of Climate Change Impacts on Water Resources within the Albuquerque 
Metropolitan Area 

The Albuquerque metropolitan area (Sandoval, Bernalillo, Valencia and Torrance counties) had a 
population of 887,087 residents in 2010 and has historically experienced rapid population growth, 
just over 21% for each of the last two decades (U.S. Census Bureau 2014). For the first time in 
history over half of the world’s population now lives in cities rather than rural areas, but the World 
Health Organization (WHO) believes that world population increases will be mainly constrained to 
the cities of developing nations (WHO 2014). Additionally, job growth in New Mexico through 
2020 is projected to be average to slower than average when compared nationally for most 
occupations (New Mexico Department of Workforce Solutions 2012). In any case, given that the 
population growth rate for the metropolitan area remained almost perfectly constant even in the last 
decade of a weaker economy, it is expected that the larger population centers in New Mexico will 
remain the epicenters of any continued growth and that a greater demand will be placed on the 
available water supply as future construction of new homes and businesses continues. 
 
Figure 7 uses data from a 2013 U.S. Environmental Protection Agency (EPA) report on climate 
change and shows expected changes in urban development for each of the southwestern watersheds 
studied by the EPA (southwest units were considered as Arizona “Ariz”, the Rio Grande “RioGra”, 
Upper Colorado Basin “UppCo”, South Platte River Basin “SoPlat”, and the Southern California 
Coastal Basin “SoCal”). It can be noted that the entire Rio Grande Basin is expected to grow in 
developed area more than either the Arizona or Upper Colorado River Basins, adding 432.4 km2 by 
mid-21st century. Newly developed growth in Albuquerque is largely limited to the western side of 
the Rio Grande because the city is bounded on its northern edge by the Sandia Pueblo, at the east by 
the Sandia Mountains and its southern boundary by Kirtland Air Force Base and the Isleta Pueblo. 
More land is available in Rio Rancho, Belen and Los Lunas and these communities tend to exceed 
the growth rate of Albuquerque during periods when the economy is improved. Regional planners 
will need to consider how conversions of the available range land to urban use might impact the 
hydrology of the basin, as well as how to encourage development that minimizes the consumption of 
the region’s water resources and promotes sustainability. 
 

 
Figure 7. Increases in developed areas of the southwestern EPA study basins with data from 
the 2013 report (EPA 2013). 
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From combining GCC projections and land use change within the Middle Rio Grande Basin, land-
use planners and officials can expect to encounter many challenges in meeting water supply 
demands. In the last few years, the Albuquerque Bernalillo County Water Utility Authority has 
switched from groundwater pumping to a greater reliance on surface water withdrawals directly from 
the Rio Grande. The river diversion is located just south of the Alameda Bridge in Albuquerque. 
ABCWUA is allowed to divert water from the river when surface flows are above 120 cfs. 
Significant inputs to the river along the Albuquerque reach include the Venada Arroyo, La Baranca 
Arroyo, Los Montoyas Arroyo, North Diversion Channel, the Calabacillas Arroyo, City of 
Albuquerque Wastewater Treatment Facility outfall, Tijeras Arroyo, and the South Diversion 
Channel, all of which primarily only flow (with the exception of the treatment facility) during 
summer monsoon rain events.  
 
ABCWUA’s shift towards a greater dependence on surface flows for consumptive use has come 
about since the realization in the early 1990s that the groundwater aquifer in the region did not 
contain as large of a volume of drinkable water as once thought. From the time period of 1960 to 
2002, the Santa Fe Group aquifer beneath Albuquerque has declined by as much as 130 feet (Hawley 
and Haase 1992, Thorn et al. 1993, Connell et al. 1998, Cole et al. 2001). Since changing to surface 
water diversions to supplement water demand the aquifer has shown signs of rebounding slightly; 
still, groundwater withdrawal in NM is considered unsustainable because the volume of water being 
withdrawn far exceeds the rate at which water is replenished in most areas. Development in the 
metropolitan area will lead to more impervious cover and less aquifer recharge in the future, and thus 
a greater importance for the availability of surface water flows for diversion from the Rio Grande.  
 
Climate change projections in the regions shown consistent warming trends across all models and 
GHG scenarios with high variability in predictions to changes in the magnitude of precipitation 
(Llewellyn and Vaddey 2013). In spite of the uncertainties regarding precipitation trends, 
streamflows are expected to be reduced dramatically because the increased temperatures will drive a 
substantial increase in evapotranspiration across the landscape and within water bodies. Specifically, 
the Upper Rio Grande Impact Assessment which was conducted by the U.S. Bureau of Reclamation 
under the auspices of the West-Wide Climate Risk Assessment program concluded: (1) native flows 
in the Rio Grande are expected to drop by approximately one-third; and (2) water supply available 
via the SJCDP are expected to drop by approximately one-quarter  (Llewellyn and Vaddey 2013). 
 
It is not just the availability of the water supply in the greater Albuquerque metropolitan area, but 
also the condition of the water source that is a matter of concern. ABCWUA can continue to pump 
from the aquifer as it has done in years precluding the operation of the water diversion system at 
Alameda; however, the water condition within the aquifer becomes increasingly saline as water is 
pumped from greater depths. Processing of highly saline sources for drinking water or irrigation 
would require expensive technologies such as reverse osmosis filtration along with the associated 
issues of an additional waste stream (brine water) and large energy demands to drive the filtration 
units.  
 
Reduced snow pack at the onset of the early stream runoff period that historically begins in April and 
peaks in May (Figure 8) and already heightened drought conditions (Figures 9 and 10) met with 
GCC temperature increases within the region also serve to lower surface water quality in the Rio 
Grande.  
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Figure 8. NRCS image of current snowpack conditions for the western U.S., image from NRCS 
SNOTEL Snow Water Equivalent. 

ftp://ftp.wcc.nrcs.usda.gov/data/water/wcs/gis/maps/west_swepctnormal_update.pdf
ftp://ftp.wcc.nrcs.usda.gov/data/water/wcs/gis/maps/west_swepctnormal_update.pdf
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Figure 9. U.S. drought outlook for 2014 spring season, image from NOAA U.S. Seasonal 
Drought Outlook. 

http://www.cpc.ncep.noaa.gov/products/expert_assessment/seasonal_drought.pdf
http://www.cpc.ncep.noaa.gov/products/expert_assessment/seasonal_drought.pdf
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Figure 10. Drought index for the Central Valley of NM from 1960 to present, image from 
Western Regional Climate Center west wide drought tracker. It can be seen from the figure 
that drought within the basin is both occurring frequently and more severely than in recent 
history. 
 
Perennial stream systems will flow at shallower depths and will be subjected to intense solar 
radiation (increased evapotranspiration and in-channel temperature), which would result in lower 
dissolved oxygen (DO) levels, due to lower DO solubility in warmer waters. Also, if less surface 
water receives the same nutrient inputs from wastewater treatment plants and agricultural runoff, 
algal blooms and subsequent decomposition would further demand DO consumption. When DO falls 
below 5 mg/l, fish kills can occur and are one of the main water quality parameters tested in aquatic 
systems.  
 
Another major concern with respect to the reliability of water supply is the increased frequency, 
severity, and size of wildland fires in the watershed. GCC predictions show that the frequency of 
wildfires will continue to increase in the future (IPCC 2013, EPA 2013, Llewellyn and Vaddey 
2013). Of the twenty largest wildfires observed in New Mexico’s recorded history, nineteen of them 
have occurred since the year 2000. Three of the most damaging fires include the Cerro Grande fire 
of 2000, the Las Conchas fire in 2011, and the Whitewater-Baldy fire in 2012 (Figure 11). These 
three fires together burned over 495,000 acres. Burn scar material from these fires then can be 
mobilized by monsoon rain events and washed into the stream systems that feed the Rio Grande 
basin, disrupting both the natural ecology of the system as well as human drinking water supplies. 
 

http://www.wrcc.dri.edu/wwdt/time/
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Two dramatic example of the potential impacts of wildfires on water supply occurred in the wake of 
the Las Conchas fire. In the summer of 2012, shortly following the fire, the monsoon season 
mobilized tremendous volumes of ash, sediment, and debris that led to dramatic declines in water 
quality and which required that the ABCWUA discontinue there use of their Rio Grande diversion 
for over 40 days. Water quality sensors deployed in the Rio Grande river at the US 550 bridge in 
Bernalillo by the Biology Department within the University of New Mexico measured DO sags 
down to 0 mg/l for sustained periods of time immediately following the heavy rain events that 
occurred over the Las Conchas burn scar in 2011 (Dr. Cliff Dahm, personal communication and 
manuscript in review). The same series of storm events also resulted in the closure of the Cochiti 
Dam outfall for a few weeks due to the massive amounts of burn material that had accumulated 
within the reservoir as well as threatened to encroach on Los Alamos National Laboratories, a 
facility that lies upstream of the dam and holds radioactive materials. 
 
In September 2013, 5 inches of rain fell on the Las Conchas burn scar in Peralta Canyon. The rain 
event mobilized hundreds of tons of sediment and deposited a sediment plug in the Rio Grande just 
below Cochiti Dam. The plug filled the river from bank-to-bank and forced the flow onto the 
floodplain and up against the levee protecting the Village of Peña Blanca. It required several weeks 
of emergency response by state and federal agencies, along with the Cochiti Pueblo, to excavate a 
new pilot channel through the sediment plug. Specific events like these are impossible to predict, but 
the risks of such events are likely to increase under future climate change.  
 

 
 
Figure 11. Three of the largest fires in NM history have all occurred since 2000. The Las 
Conchas fire burned much of the forested area around Los Alamos, threatening both the 
security of radioactive material held at the Los Alamos National Laboratory and the drinking 
water source to the main population centers in the state. 
 
Summary 
 
The challenges faced by government agencies, regulatory bodies, and private water consultants 
within the Middle Rio Grande Basin are both numerous and daunting. Regional GCC impacts will 
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continue to test resource allocations and planners can expect challenges associated with elevated fire 
frequency and severity, shifts in timing of peak and low flows, greater evapotranspiration from 
elevated surface temperatures, warmer than average stream temperatures, and increased demand for 
available water resources. 
 
Land Use  

As the global climate changes, both developed and undeveloped areas in central New Mexico will 
experience various impacts. These impacts will occur in the context of population and land use 
changes that have been occurring for some time. New Mexico has continued to grow in recent years: 
the population has increased by 36% from 1990 to 2010 and is expected to grow another 37% by 
2030 (Theobald et al. 2013). To support this increase in population, the area of developed urban land 
in New Mexico grew nearly 800% from 1950 to 2000 (from 24,000 to 191,000 acres) (Theobald et 
al. 2013). It is expected to grow another 45–80% by 2050 (to 277,000–348,000 acres) (Theobald et 
al. 2013). Similarly, exurban developed land in the state has grown over 550% from 1950 to 2000 
(from 237,000 to 1,328,000 acres) and is expected to grow another 30–45% by 2050 (to 1,730,000–
1,925,000 acres; Theobald et al. 2013). While urban and exurban development have exploded, a 
significant share of the state’s land (over 1%) has also been converted from cropland to grassland, at 
least partly as a result of Conservation Reserve Program incentives (Theobald et al. 2013). 
 
Figure 12 shows land use types by location within the study area. Much of the area is dry rangeland, 
often used for cattle grazing in the Southwest. Torrance County and southern Santa Fe County are 
sparsely dotted with single-family residential uses, while the Albuquerque area and parts of the Rio 
Grande valley are largely made up of single family residential and commercial/industrial uses. Parts 
of Torrance County, Santa Fe County, and the Rio Grande valley are irrigated agriculture.  
 
In this section, we describe the impacts of climate change (including temperature, fire, drought, and 
flood impacts) on the range of land uses listed in Figure 13. In many cases, different land use types 
will experience similar impacts from climate change (e.g. residential and commercial structures will 
experience impacts similarly); to simplify the discussion, land use types are grouped into broader 
categories and are discussed at the applicable level of aggregation throughout this report. Although 
airports are a category of land use, they are discussed in the transportation section of this report.  
 
Where available we draw from region-specific literature and where studies of other regions or larger 
geographies are used we adapt the discussion to the specific climate changes that are expected in 
central New Mexico. Note that the discussion of water supply and natural resource impacts 
(including rangeland and some open space) in this section is brief and focused on the nature of 
impacts on particular land uses, as they are each described in more detail in the key natural resources 
section of this report. 
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Figure 12. Map of Land Uses in Study Area. Inset of Albuquerque area shown in upper right. 
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Figure 13. Land Use Categories. 
 
Temperature Impacts 
Central New Mexico is expected to experience temperature increases and increasingly frequent 
heat waves (particularly at lower elevations) by the middle of the 21st century (Volpe Center 
2014). These higher temperatures can affect human health and infrastructure in a variety of ways. 
 
Structures and their occupants 
Climate change is likely to affect both structures (including residences, commercial establishments, 
retail stores, etc.) and their occupants as a result of climate change. Building occupants (rather than 
buildings themselves) experience the primary impacts of higher temperatures for these land uses. 
Occupants of the Southwest (particularly the elderly and infirm) may be increasingly vulnerable to 
heat-related morbidity and mortality as temperatures rise due to climate change, especially those 
without access to cooling systems or cooled shelters (Brown et al. 2013, Pincetl et al 2013). Heat-
related morbidity and mortality are worse when heat lasts for several days and is accompanied by 
higher levels of humidity (Brown et al. 2013). Although Central New Mexico has somewhat 
moderate high temperatures relative to other parts of the Southwest, heat-related health impacts 
result from unusual conditions relative to what is typical in an area rather than being a function of 
specific temperatures. Areas that currently experience moderate heat levels may be less adapted to 
heat and so have greater risks of health impacts of heat events (Brown et al. 2013). 
 
Additionally, higher temperatures may facilitate the formation of ozone and potentially small 
particles like fine particulate matter (PM2.5), depending on other climate changes (wind, humidity, 
etc.) and likely varying in different areas (Brown et al. 2013). These air pollutants have adverse 
health impacts, especially for vulnerable populations (the young, the elderly, and those with 

I. Structures and occupants (primarily) 
a. Residential: 

i. Single-family (density < 8 / acre) 
ii. Multi-family (density > 8 / acre) 

b. Non-residential buildings: Commercial Retail, Commercial Services, 
Commercial Major, Office, Office Major, Medical, Schools/Universities, 
Community, Mixed Use 

c. Industrial, Wholesale/Warehouse,  
II. Land (primarily) 

a. Parking (see next section for transportation, treat parking garages as a non-
residential building) 

b. Agriculture–irrigated 
c. Rangeland–dry 
d. Open Space and Recreation (irrigated and dry)  
e. Urban Vacant (includes paved and natural vacant land and abandoned structures) 

III. Support Infrastructure 
a. Natural Drainage  
b. Utilities 

IV. Kirtland Air Force Base (KAFB) (includes structures and paved and natural land) 
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respiratory illness). Air quality in Central New Mexico currently exceeds ozone and PM2.5 standards, 
although ozone levels are close to the standard in some areas.  
 
Disease prevalence is expected to change as a result of temperature changes and effects on insects, 
although whether disease prevalence will increase or decrease depends on the location and disease. 
At the same time, pollen releases are expected to be earlier and longer, and in combination with 
elevated ozone levels (caused by higher temperatures) may lead to more severe allergies (Brown et 
al. 2013). 
 
Land 
On irrigated agricultural land, milder winters can exacerbate existing pest problems or bring new 
pests or diseases. Some currently cultivated crops may become economically infeasible, resulting in 
changes to the crops produced in the region. Changing crops is likely to bring additional costs to 
farmers, including initial investments (especially high with tree crops), costs of learning about a new 
crop and its growing practices, and costs of adjusting infrastructure such as irrigation, transport, and 
processing facilities (Frisvold et al. 2013). These changing costs may also contribute to land use 
change, e.g. some irrigated agricultural lands may shift to dry rangeland, or in areas near population 
centers, the irrigated agricultural land may be converted to residential, commercial, or industrial 
uses. 
 
Warmer temperatures (and elevated CO2 levels) have the potential to increase productivity of dry 
rangeland, although these effects may be offset by drought impacts (discussed below; Frisvold et al. 
2013). 
 
Vegetation and wildlife in open space will likely shift as a result of rising temperatures; see the 
section on key natural resources for more detail. 
 
Parking areas and paved vacant land may experience heat damage, as described for roadways and 
airport runways in the transportation section of this report. 
 
Support Infrastructure and Kirtland Air Force Base 
In terms of utilities, pipelines are not expected to suffer impacts from extreme heat (National 
Research Council, 2008). To the extent that energy use increases during heat events (e.g. from 
greater air conditioning use), electrical utilities may be strained or potentially damaged. 
 
Temperature impacts on natural drainage is not well characterized in the climate impacts literature. 
Speculatively, these facilities may experience changes in vegetation as a result of higher 
temperatures.  
 
Structures and land (irrigated and dry) on Kirtland Air Force Base will likely experience impacts 
similar to those described above for structures, occupants, and irrigated and dry land. 
 
Fire Impacts 
Climate change will likely lead to higher temperatures, more severe droughts, and damage to 
vegetation; these impacts will in turn lead to more frequent and severe wildfires covering a greater 
area (Volpe Center 2014). Fires can threaten both life and property. 
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Structures and occupants 
Areas where communities are in close proximity to undeveloped lands are referred to as the 
wildland-urban interface (WUI). Central New Mexico has an extensive wildland-urban interface (see 
details in the key natural resources section). Structures and occupants in the WUI are particularly 
susceptible to wildfires, which are expected to increase in frequency and severity in the region due to 
hotter temperatures and more droughts that are expected to result from rising CO2 levels (Pincetl 
2013). Fire risks and changes in fire risk will vary by location.  
 
The costs of fire protection and fire damage can be significant when high-value structures are at risk. 
There can also be costs associated with a loss of property value in areas that are adjacent to fire 
damage. Residents of Central New Mexico may experience greater rates of injuries and mortality 
from direct contact with fires. Previous studies evaluating the health impacts of fire in the Southwest 
have found that wildfire smoke leads to respiratory and eye-related symptoms but not necessarily 
mortality, while the majority of deaths are related to burns (Brown et al. 2013).  
 
Land 
Agricultural areas and dry rangeland are at risk for increased fire damage. Fires can affect crops and 
livestock, structures and outbuildings, irrigation infrastructure, perennial crops (such as tree crops), 
and as result, compromise the economic returns of these lands.  
 
Fires and other climate change impacts can reduce coverage of forest land, allowing conditions for 
grassland regrowth and agricultural opportunities (Forest Guild 2008). Fire ecology is complex and 
changes are not well understood; while some dry rangeland and unirrigated open space may operate 
on a natural fire regime, changes in the frequency and severity of fires may disrupt ecosystems, 
altering plant and animal life (see the key natural resources section of this report for additional 
discussion of habitat impacts). 
 
Paved areas (such as surface parking lots) and vacant urban land may experience damage from fires, 
but costs are likely to be lower than for occupied structures. 
 
Support Infrastructure and Kirtland Air Force Base 
Support infrastructure (natural drainage and utilities) are not well characterized in the climate 
impacts literature. Speculatively, natural drainage facilities may experience changes in vegetation 
and increased sediment deposition as a result of wildfires. When floods follow fire damage in 
drainage facilities or on upstream land, sediment deposition may compromise the functionality of 
natural drainage areas. Aboveground utilities (e.g. electrical lines, transformers, and distribution 
stations) could be directly damaged by fires. 
 
Structures and land (irrigated and dry) on Kirtland Air Force Base will likely experience impacts 
similar to those described above for structures, occupants, and irrigated and dry land. Additional 
safety risks associated with hazardous materials should be considered at Kirtland Air Force Base and 
Sandia National Laboratory. Los Alamos National Laboratory is adjacent to but outside of the study 
area. It may be home to similarly hazardous materials that could affect adjacent land during a fire. 
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Drought and Water Supply Impacts 
Changes in precipitation levels that will result from climate change in central New Mexico are less 
certain than other climate impacts. Expected annual changes range from slight increases to moderate 
decreases. More precipitation is expected to fall as rain and less will fall as snow as a result of 
warmer temperatures, resulting in earlier peak surface water flows and less water storage in 
snowpack. At best, these precipitation impacts will not counteract higher temperatures’ effect on 
drought and at worst may exacerbate them. In either case, the region can expect to experience more 
severe drought conditions (Volpe Center 2014). 
 
Structures and Occupants 
The demand for water in landscaped areas around structures will increase as a result of drought. 
Impacts on landscape plantings that are not well adapted to desert conditions may be more severe 
(Pincetl 2013). 
 
Additionally, acequia communities with historic water rights may be pressured to transfer water to 
other jurisdictions. Residents and businesses that experience severe shortages will likely also 
experience social and economic impacts (Hurd and Coonrod 2012).  
 
Land 
It is expected that a more economically viable way to adapt to stressed water supplies in the Upper 
Rio Grande Basin (including Central New Mexico) will be to transfer water use from irrigated 
agricultural areas to urban (municipal and industrial) water uses; thus agricultural water use would 
probably decline the most in the face of regional water shortages. Additionally, flows required for 
the protection of aquatic species are also likely to divert water from agricultural uses under drought 
conditions (Firsvold et al. 2013, Hurd and Coonrod 2012). The agricultural sector would also 
experience losses (which could be partially compensated through payments for a transfer) and will 
likely use fallowing, changes in crops, and other changes in growing practices to conserve water 
(Firsvold et al. 2013). Farmland irrigation reductions will reduce the amount of green space enjoyed 
by people and wildlife (Hurd and Coonrod 2012). Additional water storage and conveyance 
infrastructure might also be needed to facilitate transfers and buffer the impacts of droughts 
(Firsvold et al. 2013). 
 
Drought and variable rainfall have the potential to reduce the habitat quality and productivity of dry 
rangeland and forests (Hurd and Coonrod 2012, Frisvold et al. 2013). Note that these impacts may be 
partially offset by potential increases in dryland productivity due to elevated CO2 levels and warmer 
temperatures (Frisvold et al. 2013). To the extent that climate change results in changes to dry 
rangeland farming practices or feed costs, ranching costs may increase. For example, selling stock at 
lower weights when feed costs are high or engaging in cycles of herd reduction in dry years followed 
by herd growth in wetter years is likely to increase costs (Frisvold et al. 2013). 
 
Unirrigated open spaces in Central New Mexico are largely well adapted to drought conditions, 
although extreme drought and unusually dry conditions along drainages may result in changes to 
vegetation and wildlife (see key the natural resources section of this report for additional discussion 
of habitat impacts). 
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Drought impacts on paved areas (such as surface parking lots) and vacant urban land have not been 
evaluated in the climate impacts literature; speculatively, substantial impacts are not expected. 
 
Support Infrastructure and Kirtland Air Force Base 
Support infrastructure (natural drainage and utilities) is not well characterized in the climate impacts 
literature. Speculatively, natural drainage facilities may experience loss of vegetation and increased 
sediment deposition as a result of drought. When floods follow vegetative losses, sediment 
deposition may compromise the functionality of natural drainage areas. Utilities are not expected to 
be substantially affected by drought.  
 
Structures and land (irrigated and dry) on Kirtland Air Force Base will likely experience drought 
impacts similar to those described above for landscaping around structures, occupants, and irrigated 
and dry land.  
 
Heavy Precipitation Events and Flood Impacts 
Even as streamflows decline and expected total precipitation changes little or decreases, central New 
Mexico is expected to experience more intense precipitation events and increased flooding by the 
mid-21st century (Volpe Center 2014). Additionally, wildfire damage can increase the risk of 
mudflows. Floods and mudflows can have direct impacts on life and property. 
 
Figure 14 shows areas that are at risk of flooding in central New Mexico. The areas shown are that 
could be flooded in a storm that might occur once every 100 years (in red), once every 500 years (in 
purple), or if a levee fails or is overtopped (in green). Note that these classifications are based on 
topography, hydrologic characteristics, and historic rainfall information; to the extent that climate 
change causes more frequent or severe flood events, these areas may flood more frequently than 
once every 100 or 500 years. If storms are very severe or if topography and hydrologic conditions 
change other areas (not highlighted) may be at risk for flooding in very severe rainfall events.  
 
Structures and occupants 
Increasing flood severity and frequency can be expected to cause injuries and mortality (Brown et al. 
2013) and structural damage. Additionally, water quality may suffer as a result of floods (Pincetl 
2013). 
 
Land 
Agricultural crops, perennial crops (such as tree crops), topsoil, and livestock may be lost or 
damaged in floods. Outbuildings and irrigation infrastructure may also be damaged. At the same 
time, deposition of flood sediments may improve fertility of agricultural and dry rangelands.  
 
Unirrigated open spaces in Central New Mexico have been subject to flood conditions in the past. 
Floods may alter vegetation and affect wildlife movements (see key the natural resources section of 
this report for additional discussion of habitat impacts). 
 
Flood impacts on paved areas (such as surface parking lots) are expected to be similar to flood 
impacts on pavement (discussed in the transportation section of this report). Impacts on vacant urban 
land will be similar to impacts on structures, dry land, or paved areas (described above) as applicable 
to the conditions on the vacant land.  
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Support Infrastructure and Kirtland Air Force Base 
When high-flow events occur, the shape and location of natural drainages may shift (Waters et al. 2001) 
and sedimentation may compromise their ability to move water out of an area. Where natural 
drainage systems exist in developed areas, these drainages may require maintenance and repair, and 
where they fail existing structures proximate to those systems are at risk of flood or erosion damage (as 
discussed above). The imagery in Figure 15 shows examples of undeveloped and at-risk properties 
adjacent to natural drainages in central New Mexico. 
 
Utilities (such as pipelines) may also be damaged from flood events due to erosion and subsidence 
(National Research Council 2008). If precipitation events bring high winds, aboveground electrical 
lines may also be damaged. 
 
Structures and land (irrigated and dry) on Kirtland Air Force Base will likely experience flood 
impacts similar to those described above for structures, occupants, and irrigated and dry land.  
 
Summary and Discussion 
Climate impacts on various land uses (resulting from floods, fires, heat, and drought) have the 
potential to cause damages, threaten human health and safety, and disrupt economic activities. 
Overall, many of the costs of climate change are likely to be borne by those directly affected by its 
impacts. The region as a whole will also be affected as public funds are allocated to repair damages 
and respond to extreme events, and the region’s economy suffers from losses in productivity. 
Mitigating the severity of and adapting to these effects can also bring substantial costs. 
 
Note that some communities will be more heavily impacted than others. In general, health-related 
impacts of climate change are expected to affect disadvantaged residents (e.g. those without health 
care) to a greater extent (Brown et al. 2013). Impacts on tribal lands may also be unique and severe, 
given the location of many tribal areas and the nature of each community’s ties to the natural 
environment (Redsteer et al. 2013). 
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Figure 14. Flood Risks. Data from FEMA.
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Figure 15. Undeveloped and At-Risk Properties Adjacent to Natural Drainages. 
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Transportation 

Regional transportation networks facilitate both economic and social interactions. Climate change 
will affect the safety and efficiency of the transport network with likely consequences for the 
movement of people, goods, and runoff. In many cases, maintenance and operations costs will 
increase due to increasingly frequent damages associated with extreme weather events.  
 
The costs of building and maintaining transportation infrastructure are substantial. The State of New 
Mexico and local governments spent nearly $1.5 billion on transportation in 2010, largely for 
highways (RITA 2013). At present New Mexico has over 68,000 miles of public roads 
accommodating over 25 billion annual vehicles-miles traveled (RITA 2013). While most commuters 
travel by car, about 1% of commute trips take place on transit (predominantly buses) while 2% are 
walk trips (RITA 2013). Transportation infrastructure also moves goods: trucks, planes, and over 
1,800 miles of freight rail lines carry over $30 billion worth of freight shipments originating from 
New Mexico (RITA 2013). The transportation system also brings safety risks. In New Mexico there 
were over 350 road traffic fatalities (including 41 pedestrians and 4 cyclists) and 98 rail accidents 
(with 10 fatalities) in 2011 (RITA 2013). Figure 16 shows the location of major roads, rail lines, and 
airports in the study area. Major roads shown are defined in data provided by NM DOT. 
 
The State of New Mexico has nearly 4,000 bridges, over 16% of which are either structurally 
deficient or functionally obsolete (RITA 2013). Figure 17 shows the location of water conveyance 
and control infrastructure in the study area, most of which is located in the Albuquerque area.  
 
Climate change is likely to result in some changes to travel patterns as tourists react to increasing 
temperatures and agricultural producers shift crop types and timing (Koetse and Rietveld 2009). It 
will also have direct effects on travelers and transportation infrastructure. In this section, we focus on 
the direct effects on travelers and infrastructure, describing the impacts of climate change (including 
temperature, fire, drought, and flood impacts) on travelers and transportation features listed in Figure 
18. Where available we draw from region-specific literature and where studies of other regions or 
larger geographies are used we adapt the discussion to the specific climate changes that are expected 
in central New Mexico.  
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Figure 16. Transportation Infrastructure of Central New Mexico. 
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Figure 17. Water Conveyance and Control Infrastructure. Data from FEMA.
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Figure 18. Transportation Infrastructure Categories. 
 
Temperature Impacts 
Central New Mexico is expected to experience temperature increases and increasingly frequent heat 
waves (particularly at lower elevations) by the middle of the 21st century (Volpe Center 2014). These 
temperatures changes can impact transportation infrastructure and travelers in a variety of ways.  
 
Vehicle Transport 
Higher temperatures will likely increase the use of vehicle air conditioners, potentially increasing 
vehicle emissions (vehicles using air conditioners emit 37% more pollutants) and reducing fuel 
economy (vehicles using air conditioners use 13–43% more fuel) (Niemeier et al. 2013). Hotter 
conditions can also contribute to accident risks due to heat-stress (Koetse and Rietveld 2011) and 
truck and tire wear, and vehicle overheating (Camp et al. 2013, FTA 2011, National Research 
Council 2008). In particular, transit bus air conditioning systems may fail or require more 
maintenance, as doors open and close repeatedly and may not be able to handle very hot 
temperatures (FTA 2011). Transit riders may also be susceptible to heat-related illness or mortality 
when waiting for a bus or riding a bus with inadequate cooling (FTA 2011). 
 
Roadway pavement will have a shorter lifetime as a result of higher temperatures and resulting 
expansion, softening, and rutting of pavements and migration of liquid asphalt, especially at 
temperatures exceeding 90oF (Camp et al. 2013, National Research Council 2008, Neiemeir et al. 
2013, Schwartz 2010). Highways may also experience heat-related damage due to expansion of 
concrete joints, steel, protective cladding, and coats and sealants (Camp et al. 2013). Road damage 
will affect the use of roads (Niemeier 2013) and likely increase vehicle maintenance costs (Camp et 
al. 2013) and accident risks. At the same time, warmer winter temperatures may reduce ice damage 
to roads and snow removal costs, as well as reduce the impacts of road salt and improve the safety of 
winter travel (National Research Council 2008, Camp et al. 2013). 
 
Traffic signals may also be affected by heat waves when high temperatures increase air conditioning 
demand, leading to blackouts (FTA 2011); compromised traffic signals can increase traffic, travel 

I. Vehicle transport (trucks, bus transit and personal vehicles) 
a. Vehicles and Drivers 
b. Road pavement 
c. Roadway elements (signage, signals, lighting, guard rail, barriers, etc) 
d. Landscaping and roadside vegetation 

II. Bike/Pedestrian transport 
a. Cyclists and pedestrians 
b. Bike/Pedestrian facilities 

III. Rail travel 
a. Rail lines and related infrastructure 

IV. Air travel 
a. Airports and airplanes 

V. Drainage and flood control 
a. Bridges, Major Structures, Culverts 
b. Storm Drain systems and flood control infrastructure 
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delays, and accident risks. Roadside vegetation and landscaping can also be adversely impacted by 
higher temperatures (National Research Council 2008). 
 
Bike/Pedestrian Facilities 
Very high and very low temperatures can discourage bike trips and result in shifts to vehicle travel 
(Koetse and Rietveld 2009); the net effect of temperature changes in central New Mexico (which 
will be warmer in winter and summer) is unknown. Higher temperatures can deteriorate pavements 
used on bicycle and pedestrian facilities (Niemeier et al. 2013), increasing maintenance costs and 
potentially decreasing safety.  
 
Rail Travel 
Elevated temperatures can cause rail lines to buckle (FTA 2011, National Research Council 2008, 
Niemeier et al. 2013, Schwartz 2010), which may result in delays, derailments and a loss of life or 
spills of hazardous materials. These “sun kinks” or “heat kinks” can also hinder rail travel (due to 
derailments or reduced travel speeds to avoid derailments; FTA 2011, Niemeier et al. 2013), 
potentially increasing the costs of shipping and travel by rail. Heat kinks are expected to increase as 
the number of days with heat over 90oF increases (FTA 2011); failure risk is increased at 110oF 
(National Research Council 2008). Electrical locomotive and rail equipment can also fail when 
temperatures climb (FTA 2011). At the same time, warmer winter temperatures may cause decreases 
in ice-related damages and safety impacts (Koetse and Rietveld 2011, National Research Council 
2008). 
 
Air Travel 
Airport and runway pavements can experience the same damage as road pavements. Concrete 
facilities can also experience damage from heat (National Research Council 2008, Niemeier et al. 
2013). Airplanes may also experience weathering and declining engine performance due to heat 
(Camp et al. 2013, Niemeier et al. 2013). Hotter temperatures can also reduce airplane lift 
(particularly at high elevation airports such as the Albuquerque International Sunport), necessitating 
lighter planes, canceled or delayed flights, or longer runways (National Research Council 2008). At 
the same time, warmer winter temperatures will reduce costs of ice and snow removal and their 
impacts on runoff (National Research Council 2008). 
 
Drainage and Flood Control 
Greater temperatures can result in bridge damage from thermal expansion of bridge joints (Schwartz 
2010, National Research Council 2008, Niemeier et al. 2013). 
 
Wildfire Impacts 
Hotter and drier conditions and damaged vegetation will in turn lead to more frequent, more severe, 
and larger wildfires (Volpe Center 2014). Fires can threaten the safety of travelers and the integrity 
of transportation infrastructure. 
 
Vehicle Transport 
Increasing frequency and severity of wildfires can cause damage to roads, road closures, and reduced 
visibility (Camp et al. 2013, National Research Council 2008, Niemeier et al. 2013). Freight traffic 
may be delayed by fires (Camp et al. 2013) and travelers may experience increased safety risks from 
fires. Bus service may be suspended or rerouted to avoid road closures (FTA 2011); where alternate 
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routes are not available, compromised transit service can have significant impacts for transit 
dependent populations. 
 
Bike/Pedestrian Facilities 
Bike and pedestrian facilities and travelers will experience similar impacts as road infrastructure and 
travelers including greater damages from fire, facility closures, reduced visibility, and increased 
safety risks. 
 
Rail Travel 
Rail infrastructure will also experience greater damages and closures due to fires and reduced 
visibility. Wooden rail bridges are at particularly high risk of damage from wildfires (Camp et al. 
2013). 
 
Air Travel 
Wildfires can reduce airplane visibility (National Research Council 2008, Niemeier et al. 2013), 
which can lead to delays and cancellations at some airports (Koetse and Rietveld 2009). Wildfires 
can also directly damage airport facilities (Niemeier et al. 2013), especially those that are adjacent to 
fire-prone undeveloped land, increasing costs and safety risks. 
 
Drainage and Flood Control 
Fire damage can reduce vegetation and increase the risk of mudflows. Sediment and debris from 
upstream areas that have been damaged by fire can damage and settle in drainage facilities, 
increasing maintenance costs and reducing their functionality.  
 
Drought and Water Supply Impacts 
The nature of future precipitation change in Central New Mexico is difficult to predict. Expected 
impacts range from small increases in annual rainfall to moderate decreases. More precipitation is 
expected to fall as rain and with less falling as snow, resulting in earlier peak surface water flows 
and less water storage in snowpack. At best, these precipitation impacts will not counteract higher 
temperatures and at worst that may exacerbate them. In either event, the region can expect to 
experience more severe droughts (Volpe Center 2014). 
 
Vehicle Transport 
Droughts can increase the costs of keeping buses clean, as they increase dust levels (FTA 2011) 
although given the low frequency of rainfall and high dust levels in central New Mexico, the 
difference in this region is likely to be minor. 
 
Other facilities 
Drought impacts on bike/pedestrian facilities, rail travel, air travel, and drainage and flood control 
are not discussed in the climate impacts literature. Impacts to these facilities are unknown at this 
time and are speculatively expected to be minor. 
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Heavy Precipitation Events and Flood Impacts 
Central New Mexico is expected to experience a greater number of heavy precipitation events, which 
is likely to lead to increased flooding (Volpe Center 2014). Additionally, an increase in wildfires 
may lead to greater mudslide risks in some areas. These events threaten the safety of travelers and 
the integrity of transportation infrastructure. 10 (shown and discussed in the land use section) shows 
the location of flood risks in New Mexico. 
 
Vehicle Transport 
In general, heavy rainfall events reduce travel demand and travel speeds, increase car and bus 
accident risks (particularly after dry weather) and reduce the efficiency of vehicle travel (FTA 2011, 
Koetse and Rietveld 2011, Niemeier et al. 2013). Given that total precipitation may be neutral or 
decrease in central New Mexico while severe events are expected to increase, the net effect of 
precipitation changes on vehicle travel demand, speeds, accidents, and travel efficiency in this region 
is difficult to predict. However, the presence of more extreme weather events has the potential to 
lead to freight trucking delays (Camp et al. 2013). 

Potential safety impacts are also complex, as snowfall also increases accident risk (though less than 
rainfall; Koetse and Rietveld 2011) and will be decreasing (as snow shifts to rainfall). Furthermore, 
while rain and snow increase the frequency of accidents, they may also decrease the severity of 
accidents due to reductions in travel speeds (Koetse and Rietveld 2011).  
 
Some flooding impacts on vehicle transport are clear: an increase in flood events will likely cause 
more vehicle travel disruptions, damage the structural integrity of inundated roads, and strand 
travelers and impact evacuation routes (Camp et al. 2013, National Research Council 2008). These 
flood events can increase accident risks and road maintenance costs. If heavy precipitation events are 
accompanied by high winds, downed trees and power lines can block roads (FTA 2011) and road 
signage may be damaged. Flooding of bus routes and bus storage lots can compromise transit 
reliability, which has important impacts on transit dependent populations, especially when transit is 
needed to evacuate residents from flooded areas (FTA 2011). 
 
Bike/Pedestrian Facilities 
As with vehicle travel, heavy precipitation events can negatively impact bike and pedestrian travel 
(Koetse and Rietveld 2009), safety, and efficiency. Flood events can disrupt travel, damage facilities 
and strand travelers, increasing safety risks and maintenance costs.  
 
Rail Travel 
Passenger and freight rail lines are vulnerable to floods and mudflows as they are often located near 
steep slopes and waterways (Camp et al. 2013). Flooding of rail lines could compromise their 
stability, potentially leading to damage and delays (FTA 2011, National Research Council 2008). If 
heavy precipitation events are accompanied by high winds, trains may reduce their speed and 
downed trees and power lines can block rail lines (FTA 2011). 
 
Air Travel 
Heavy precipitation events can result in air travel delays, accidents, and airport floods and closings 
(Camp et al. 2013, Koetse and Rietveld 2011, National Research Council 2008, Niemeier et al. 
2013). Floods can also cause delays, damage airport structures, runways, drainage systems and 
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navigational aids (Camp et al. 2013, National Research Council 2008, Niemeier et al. 2013). If storm 
events also bring high wind speeds, delays and accident risks may further increase (Camp et al. 
2013, Koetse and Rietveld 2011). 
 
Drainage and Flood Control 
Drainage and flood control systems will be overloaded in flood conditions (National Research 
Council 2008, Niemeier et al. 2013). This may result in deposition of debris and sediment in 
drainage systems and it may scour or damage culverts and drainage channels (Willems 2012). These 
impacts can decrease drainage effectiveness and increase maintenance costs. Bridge damage can also 
result from floods through bridge scour, which can erode foundations and weaken bridge structures 
(Camp et al 2013, FTA 2011). Impacts to bridges and culverts may be a significant concern because 
of their longer design lifetimes (changes to their design generally occur more slowly than climate 
changes) and because they are more costly to replace than, for example, pavement (Meyer and 
Weigel 2011). Additionally, bridge failures can have significant safety and travel delay impacts. 
 
Summary 
Most disruptions to transportation infrastructure (from floods, fires, heat damage, etc.) have the 
potential to disrupt travel itself, which can lead to delays, higher travel or shipping costs, and 
inefficiencies in the movement of people and goods (Camp et al. 2013, Niemeier et al. 2013). 
Delays, inefficiencies, damages, infrastructure failures, and safety impacts that may result from 
climate change impacts on all travel modes all have associated costs. These costs can affect travelers, 
public funds, and the region’s economy. 
 
Key Natural Resources 

Key natural resources evaluated for this study area are wildfire, riparian habitat, threatened and 
endangered species. All resources are anticipated to be affected by climate change. Wildfires effects 
soil erosion, water quality, air quality, land use, public health, and wildlife and plant communities. 
The limited riparian habitat in the arid study area is important for wildlife and recreation. 
Management of threatened and endangered species by regulatory agencies could impact water use 
and land use.  
 
Precipitation and temperature strongly influence the distribution and abundance of species. In this 
region and globally, the effects of climate change on species, ecosystems and ecosystem services 
include declines in species populations (Pounds et al. 2006); shifts in species distributions (Root et 
al. 2005); synchronization of seasonal plant and animal life history events (Brown et al. 1997); 
increased invasion by exotics (Walther et al. 2002), spread of pathogens and pests (Brooks and 
Hoberg 2007), appearance of vegetation dieback (Breshears et al. 2005); and community-ecosystem 
reorganization (Brown et al. 1997). Growth of the human population results in water use conflicts 
with natural resources as well as habitat fragmentation (Finch 2012). The study area may experience 
more desertification. 
 
Like other regions of the Southwest, Central New Mexico is expected to experience large 
temperature increases, increased severity and duration of drought periods, increased wildfire activity 
(both in size and severity), insect outbreaks and overall reduction in river and stream flows. The 
current vegetation communities are shown in Figure 19. Projected changes in the plant communities 
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in the central Rio Grande Valley are shown in Figure 20 (Friggens et al. 2013). The future 
community compositions are based in the IPCC IS92a scenario (1% increase in greenhouse gases per 
year after 1990) and two general circulation models (GCMs)––the Hadley Center and the Canadian 
Center for Climate modeling and Analysis. Chihuahuan desertscrub is predicted to expand 
considerably. Creosote bush (Larrea tridentata) is the dominant plant species in the Chihuahuan 
desertscrub. 
 
Based on the predicted temperature change and number of freshwater species of concern, the Rio 
Grande-Elephant Butte watershed is classified as one of the most vulnerable in the states of New 
Mexico, Arizona, Colorado and Utah (Robles and Enquist 2010). 
 
Crucial habitats are places containing food, water, cover, shelter and corridors for wildlife. The 
Western Governors’ Crucial Habitat Assessment Tool (CHAT) was used to map these areas in 
Central New Mexico (Figure 21). Wildlife corridors are shown in Figure 22 (Middle Rio Grande 
Council of Government). Climate change will further fragment habitat and wildlife corridors. The 
risk of large animals being killed crossing roadways is likely to increase as their habitat and 
connectivity between the lands they use declines. Of the large animals, the black bear is at greatest 
risk as there is a risk of mismatch between critical resources and breeding (Glick et al. 2011). 

http://en.wikipedia.org/wiki/Larrea_tridentata
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Figure 19. Current Vegetation Communities in Central New Mexico. 
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Figure 20. Projected Changes in Vegetation in Central Rio Grande Valley. 
 
Wildfires 
With warmer, drier weather there will be a continuing increase of combustible biomass as the 
growing season is extended. Warming temperatures and wildfire will increase the potential for 
invasive species colonization and native insect outbreaks (U.S. Forest Service 2010). The cumulative 
basal area loss due to forests pests and pathogens over the 2013–2027 time frame is shown in Figure 
23. As trees become more stressed, they are more susceptible to insects and disease, often resulting 
in mortality. The predicted loss of forested lands will result in a change in vegetation patterns, 
altering the occurrence, severity and distribution of wildfires. As seen over the past several years, 
there will continue to be a great increase in the wildfire size, severity and frequency (U.S. Global 
Change Research Program 2009). Smoke from wildfires will continue to cause a safety problem, 
especially along travel routes. Indications from the Las Conchas fire emissions analysis is that 
wildfires contribute more to air pollution and global warming than previously predicted (Department 
of Energy/Los Alamos National Laboratory 2013). The resulting smoke significantly degrades air 
quality, damages human and wildlife health, as well as interacting with sunlight to cause substantial 
warming (Department of Energy/Los Alamos National Laboratory 2013). This large release of 
carbon can be reduced by thinning woodlands to  reduce surface fuels and emissions from wildfires 
(Restaino et al. 2013). In addition, with drier soils, more sudden precipitation events, and more 
destructive fires, the risk of land slides in the wildfire area will increase. Storms over areas burned 
by the Las Conchas fire caused debris and flooding that damaged 79 structures, roads and erosion on 
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the Santa Clara Pueblo. The Federal Emergency Management Administration (FEMA) declared two 
disasters in a month because of flooding (Indian Country 10/25/2013).  
 
The wildland-urban interface (WUI) is an area where community is at risk for wildfire because they 
are located in close proximity to undeveloped lands and fuels. The WUI areas are shown in Figure 
24). There are homes, roads, commercial properties, roads and other infrastructure at risk near the 
Rio Grande Bosque in Albuquerque. 
 
Riparian Habitat 
Cottonwoods (Populus fremontii and Populus deltoids) and willows (Salix exigua) are the 
predominant native riparian species in the study area. Riparian habitat is by far the most critical 
habitat in the project area. Human development of wetlands has resulted in 80% of the wetlands 
being drained (Water Assembly and Mid-Region Council of Governments 2005). Climate change 
will result in an increasing demands for water, timing of precipitation, and decreased supplies. It is 
predicted that there will be a decreasing availability of riparian habitat, including the loss of mature 
trees due to fire and insect and disease, which would directly and indirectly affect many species of 
birds and mammals (Llewellyn and Vaddey 2013). The predicted increase in extreme events could 
increase floodplain connection to the river, but also have other consequences. Long periods of lower 
flows will increase channel narrowing, which often results in a reduction of riparian habitat. These 
activities would both directly and indirectly negatively affect most of the species that depend upon 
this habitat (Llewellyn and Vaddey 2013). However, the conversion of the bosque to a more sparsely 
vegetated and drier habitat would positively affect more adaptive species, such as roadrunners and 
coyotes (Llewellyn and Vaddey 2013). Invasive species may well be the greatest challenge in 
managing riparian habitat. They often outcompete native vegetation, become quickly established and 
are difficult to remove (more salt, fire and drought tolerant, and resistant to water stress). Climate 
change may lower the water table and increase the risk of fire, which favors invasive species over 
native riparian species. 
 
Salt cedar or tamarisk (Tamarix spp.) is an invasive species that has been a major focus of 
management and restoration in the Middle Rio Grande basin. The species is associated with water 
draw down, floodplain loss, and increased fire risk. The species has the capacity to establish in sites 
that are less suitable for native flora due to alteration of flows and grazing (Stromberg et al. 2009). 
As the climate changes, tamarisk is likely to spread, while outcompeting cottonwood species (Glick 
et al. 2011 and Friggens et al. 2013). Stress due to water limitations and increased fire will favor the 
establishment of tamarisk. Tamarisk also shades areas, which reduces cottonwood recruitment 
(Obedzinski 2001). 
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Figure 21. Crucial Habitat Areas in Central New Mexico. 
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Figure 22. Wildlife Corridors in Central New Mexico.
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Figure 23. Cumulative Basal Area Loss due to Forest Pests and Pathogens Projected over the 2013-2027 Time Period.  
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Figure 24. Wildland-Urban Interface Areas.
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Listed and Proposed Threatened and Endangered Species 
Historic development of the Upper Rio Grande has had impacts on the listed species and their 
habitats, and climate change promises to exacerbate those impacts, primarily through decrease in 
stream flows and available water to support riparian habitat (Llewellyn and Vaddey 2013). There are 
three endangered species, two threatened species, one proposed endangered species, and one 
proposed threatened species in the counties in the study area. Areas designated as critical habitat by 
the USFWS are shown in Figure 25.  
 
Rio Grande silvery minnow (Hybognathus amarus) 
 
Currently the Rio Grande silvery minnow is endangered and believed to only occur in one reach of 
the Rio Grande in New Mexico, a stretch of river that runs the entire length of the planning area 
(Figure 26). The USFWS identified four primary constituent elements in the critical habitat 
designation for this species: 1) a hydrologic regime that provides sufficient flowing water capable of 
providing a diversity of aquatic habitats including backwaters, shallow side channels and pools; 2) 
low velocity-habitat; 3) substrates of predominantly sand or silt; 4) Water of sufficient quality to 
maintain natural, daily, and seasonally variable water temperatures in the approximate range of 
greater than 1 degree Celsius (°C; 35 degrees Fahrenheit[°F]) and less than 30 °C (85°F) and reduce 
degraded water quality conditions (decreased dissolved oxygen, increased pH, etc.). Successful 
recruitment is strongly linked to the magnitude and duration of spring runoff. Population increases 
coincide with inundation of overbank habitats that support larval development. In the summer and 
fall, the drying river causes mortality to the silvery minnow. The decline in populations is mainly 
due to modification of its habitat, competition and predation by non-native species, and water quality 
degradation. Climate change is projected to reduce available water in the Upper Rio Grande system, 
making environmental flows in the river more difficult to maintain, and reducing the shallow 
groundwater available to riparian vegetation. Overbank flow events are projected to become less 
common in future years, although an increase in extreme events is also forecast, which could 
increase floodplain connection but also have other consequences. Long periods of lower flows may 
also increase the process of channel narrowing, which is decreasing available riverine and riparian 
habitat (Llewellyn and Vaddey 2013).  Soil erosion caused by wildfire contributes to altered flow 
regimes that depart significantly from natural conditions and reduce or modify habitat by preventing 
overbank flooding, trapping nutrients, and altering sediment transport regimes. These changes affect 
the Rio Grande silvery minnow by reducing its food supply, modifying its preferred habitat, 
preventing dispersal, and providing a continual supply of non-native fish that may compete with or 
prey upon the species. Cohen et al. (2013) modeled the direction and magnitude of the climatic shift 
this species would incur under three future scenarios: the low (B1), intermediate (A1B), and high 
(A2) projected temperature and atmospheric concentrations of carbon dioxide and methane (Figure 
27). The authors utilized climate variables from the IPCC. The models were built using a limited set 
of predictor variables (notably, various topographic, precipitation, and temperature variables). 
Topographic variables don't change, thus projection shifts should be interpreted as shifts in climate-
based niche suitability only, not projected population trends. Conclusions drawn from these 
projection results should be limited only to direction and magnitude of climatic pressure (personal 
communication, Dean Hedrickson).  
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Southwestern Willow Flycatcher (Empidonax traillii extimus) 
 
The Southwestern Willow Flycatcher is listed as an endangered species. Nearly half (43 percent) of 
the endangered Southwestern Willow Flycatcher territories are found in riparian patches consisting 
primarily (greater than 90 percent) of native trees such as willow (Salix spp.) (New Mexico Biota 
Information System 2014. This species is known to nest in tamarisk as well. The greatest threats to 
the subspecies is modification of habitat, changes in flood and fire regimes, changes in water and 
soil chemistry, as well as establishment of invasive non-native plants (U.S. Fish and Wildlife Service 
2002). This species is also vulnerable due to thermal tolerances and brood parasitism by brown-
headed cowbirds. A vulnerability assessment of 117 vertebrate species that occur in the Middle Rio 
Grande Bosque identified the Southwestern Willow Flycatcher as the most vulnerable to climate 
change as it is restricted to a local food source during nesting season and the primary food source, 
insects, depends on water for some phase of their lifecycle. This species received the highest 
vulnerability rating for phenology (Friggens et al. 2013). The flycatcher is a migrant at risk of a 
timing mismatch between initiation of migration and availability of critical resources at the 
destination site. The species also has a short nesting season that is thought to be limited by resource 
availability. Lower than average precipitation reduced flycatcher seasonal productivity at both 
Roosevelt Lake and the San Pedro River in Arizona. This could lead to more frequent incidents of 
extremely low reproductive success, such as occurred at Roosevelt Lake during the 2002 drought. 
Successive years of low productivity could lead to unsustainable local populations (Paxton et al. 
2007).  
 
Mexican Spotted Owl (Strix occidentalis lucida) 
 
The Mexican Spotted Owl is listed as a threatened species. Mexican spotted owl’s preferred habitat 
is high canopy closure, high stand density, a multi-layered canopy, uneven-aged stands, numerous 
snags, and downed woody matter. This species is vulnerable to increased temperatures because it has 
a narrow and low thermal neutral zone. Population projections for this species in New Mexico, 
modeled under three IPPC scenarios, predict a substantial decline (Figure 28; Peery et al. 2012). A 
vulnerability assessment  was conducted using three tools: 1) NatureServe Climate Change 
Vulnerability Index (Young et al. 2010); 2) Environmental Protection Agency Framework for 
Categorizing the Relative Vulnerability of Threatened and Endangered Species to Climate Change 
(Galbraith and Price 2009); and 3) Rocky Mountain Research Station’s Species Vulnerability 
Assessment Method (Bagne and Finch 2008). All three tools indicated at least moderate vulnerability 
to climate change for the Mexican spotted owl, however, along with fairly high uncertainty in the 
ratings (U.S. Fish and Wildlife Service 2012). 
 
Jemez Mountain Salamander (Plethodon neomexicanus) 
 
The Jemez Mountain salamander is listed as an endangered species. The Jemez Mountain 
salamander is endemic to north-central New Mexico in areas of tree canopy cover greater than 50%, 
elevation between approximately 7,000 and 11, 250 feet, and coniferous logs. The underground 
habitat is comprised of deep, fractured, subterranean igneous rock in areas of high moisture (Federal 
Register 2013). Climate change will cause changes in fire regime and forest structure that will 
constrict the distribution of the species and genetically isolate populations (Parmenter 2009). After a 
stand-replacement wildfire burned a fire-suppressed landscape in New Mexico that historically 
burned with low- or mixed-severity fires, microhabitat temperatures in severely burned habitats 
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consistently exceeded preferred temperatures (and occasionally the critical thermal maximum) of the 
Jemez Mountains salamander. The mean size of salamanders in the burned area decreased during the 
4 years after the fire (Cummer and Painter 2007).  
 
New Mexico Jumping Meadow Mouse (Zapus hudsonius luteus) 
 
The New Mexico jumping meadow mouse is a proposed endangered species. The New Mexico 
jumping meadow mouse is associated with tall, dense, herbaceous riparian vegetation, especially 
areas dominated by sedges. The species distribution has declined due to loss of this habitat, primarily 
as a result of livestock grazing. However, drought, development, recreation, forest fire, and loss of 
the American beaver (Castor canadensis) also contributed (Frey and Malaney 2009). Of 37 
mammals assessed for vulnerability to climate change in the middle Rio Grande valley, the New 
Mexico jumping meadow mouse was the most vulnerable based on habitat, physiology, and biotic 
interactions (Friggens et al. 2013). Biotic interactions are food, predators, symbionts, disease, and 
competitors. Wet meadow habitat could constrict due to loss of riparian habitat. 
 
Pecos Sunflower (Helianthus paradoxus) 
 
The Pecos sunflower is listed as a threatened species. Pecos sunflower is a wetland plant that grows 
on wet, alkaline soils at spring seeps, wet meadows, stream courses and pond margins. Populations 
are all dependent upon wetlands from natural groundwater deposits. Incompatible land uses, habitat 
degradation and loss, and groundwater withdrawals are current and historic threats to this species 
(U.S. Fish and Wildlife Service 2005). Decreased groundwater and increased groundwater pumping 
as periods of drought increase could jeopardize populations of these species as climate changes.  
 
Yellow-billed Cuckoo (Coccyzus americanus occidentalis) 
 
The western population of the yellow-billed cuckoo is a proposed threatened species. This species 
generally prefers mature riparian habitats and are most commonly associated with cottonwood or 
other native forests. Of 42 avian species assessed for vulnerability to climate change in the Middle 
Rio Grande area, the western yellow-billed cuckoo was ranked as the fourth most vulnerable. The 
species is vulnerable in all categories assessed: habitat, physiology, phenology, and biotic 
interactions (Friggens et al. 2013).  
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Figure 25. USFWS Designated Critical Habitat for Threatened and Endangered Species.
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Figure 26. Current Distribution of the Rio Grande Silvery Minnow.  
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Figure 27. Projected Distribution and Magnitude of Rio Grande Silvery Minnow. 



Climate Change Effects on Central New Mexico’s Land Use, Transportation Infrastructure, and Key Natural Resources  EMI 

 

47 
 

 
 
Figure 28. Projected Changes in Mexican Spotted Owl Populations. 
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